
CSE 373 �ickCheck 7 Name: Evil KevinEvil Kevin Student ID: 12345678901234567890

Suppose you work on a droid assembly line. You have a supposedly sorted array of N Droid objects that
implement Comparable. However, when looking through your array, you realize these aren’t the droids
you’re looking for! The machine malfunctioned and made at most k mistakes: there are no more than k
inversions, where we de�ne an inversion as a pair of droids that is not in the right order.

Hint: The array [0 1 1 2 3 4 8 6 9 5 7] has 6 inversions: 8–6, 8–5, 8–7, 6–5, 9–5, 9–7.

For the questions below, give the typical or expected runtime. For example, for quicksort, assume that the
pivot choices result in O(logN ) recursive depth.

1. For each k, give the most e�cient sorting algorithm and its simpli�ed asymptotic runtime.

(a) k ∈ O(N ) Algorithm: Insertion sortInsertion sort Runtime: Θ(NN )

Insertion sort has a worst-case runtime of Θ(N 2) on general input, but remember that it works quite
well if there are relatively few inversions: Θ(N + k).
Java merge sort (adaptive merge sort with natural runs) might also work if the k ∈ O(N ) inversions
are, for example, due to the smallest item moving to the end of the array. In this scenario, there are
two natural runs, one with the �rst N - 1 items and the other with the last 1 item. But we can imagine
a worst case where each adjacent pair of items in the array are swapped: in this case, there are about
k ≈ N /2 inversions but N natural runs, leading to Θ(N logN ) runtime.

(b) k ∈ O(N 2) Algorithm: Merge sort, quicksort, or heapsortMerge sort, quicksort, or heapsort Runtime: Θ(N logNN logN )
Any expected Θ(N logN ) runtime comparison sorting algorithm would work here: merge sort, quick-
sort, or heapsort. Insertion sort isn’t the best sort for this problem since the runtime depends on the
number of inversions, or O(N + N 2) = O(N 2).
Does stability matter? It’s not well-de�ned in this problem. Since the machine mixes up the order of
the droids, we’re not sure if the relative ordering of equal items is any good.

(c) k ∈ O(logN ) Algorithm: Insertion sortInsertion sort Runtime: Θ(NN )

Insertion sort has a worst-case runtime of Θ(N 2) on general input, but remember that it works quite
well if there are relatively few inversions: Θ(N + k).
Java merge sort (adaptive merge sort with natural runs) might also work, though the complete analysis
is out of scope.

2. Two weeks later, you’re given another batch of droids that are supposed to be sorted on a 32-bit int ID, an
instance variable of Droid. The machine hasn’t been �xed and again made at most k mistakes. For each k,
give the most e�cient sorting algorithm and its simpli�ed asymptotic runtime.

(a) k ∈ O(N 2) Algorithm: Radix sortRadix sort Runtime: Θ(NN )
Sorting on integer ID allows us to use counting sorts. Radix sort is the most realistic choice to make
sure our count array is a reasonable size. That said, in theory, counting sort could work since we could
initialize (one or more) count arrays to cover all 4 billion or so possible integers. The runtime for both



radix sort and counting sort on integers is Θ(N ) since there’s a limit on the size of Java integers, so
there are constant number of digits to compare.

(b) k ≤ 5 Algorithm: Insertion sort or radix sortInsertion sort or radix sort Runtime: Θ(NN )
Insertion sort works well because the array is almost sorted, so the runtime is in Θ(N + 5) = Θ(N ).
Counting sort and radix sorts work well for the same reason as part (a).

Adaptive merge sort is also appropriate here. Imagine an array with exactly 5 adjacent pairs (anywhere
in the array) swapped out of order. There are thus at most 6 natural runs in the array.


