CSE 373	QuickCheck 7	
----------------	--------------	--

Suppose you work on a droid assembly line. You have a supposedly sorted array of N Droid objects that implement Comparable. However, when looking through your array, you realize these aren't the droids you're looking for! The machine malfunctioned and made at most k mistakes: there are no more than k inversions, where we define an inversion as a pair of droids that is not in the right order.

Name: Evil Kevin

Student ID: 1234567890

Hint: The array [0 1 1 2 3 4 8 6 9 5 7] has 6 inversions: 8-6, 8-5, 8-7, 6-5, 9-5, 9-7.

For the questions below, give the typical or expected runtime. For example, for quicksort, assume that the pivot choices result in $O(\log N)$ recursive depth.

1. For each k , give the most efficient sorting algorithm and its simplified asymptotic asymptotic k , give the most efficient sorting algorithm and its simplified asymptotic k , give the most efficient sorting algorithm and its simplified asymptotic k , give the most efficient sorting algorithm and its simplified asymptotic k .	ptotic runtime
--	----------------

(a) $k \in O(N)$ Algorithm: Insertion sort Runtime: $\Theta(N)$	
---	--

(b)
$$k \in O(N^2)$$
 Algorithm: Merge sort, quicksort, or heapsort Runtime: $\Theta(N \log N)$

(c)
$$k \in O(\log N)$$
 Algorithm: Insertion sort Runtime: $\Theta(N)$

2. Two weeks later, you're given another batch of droids that are supposed to be sorted on a 32-bit int ID, an instance variable of Droid. The machine hasn't been fixed and again made at most *k* mistakes. For each *k*, give the most efficient sorting algorithm and its simplified asymptotic runtime.

(a) $k \in O(N^2)$	Algorithm: Radix sort	Runtime: $\Theta(N$
--------------------	-----------------------	---------------------

(b)
$$k \le 5$$
 Algorithm: Insertion sort or radix sort Runtime: $\Theta(N)$