Section 02: Solutions

Section Problems

1. Comparing growth rates

(a) Order each of the following functions from fastest to slowest in terms of asymptotic growth. (By “fastest”, we
mean which function increases the most rapidly as n increases.)
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(b) For each of the above expressions, state the simplified tight O bound in terms of n.
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(c) Order each of these more esoteric functions from fastest to slowest in terms of asymptotic growth. (By “fastest”,
we mean which function increases the most rapidly as n increases.) Also state a simplified tight O bound for
each.

Solution:

* 3", which is in O (3™)

e 2" which is in O (27)

. on/2 » 27/, whichis in O (v2") (or 0 (27/2)).

° 3" Constant multipliers don’t matter in big-O notation,
o 27 but a constant factor in the exponent does matter,
since it corresponds to multiplying by some constant
to the n™ power. Saying 2"/2 is in O (2") would be
true, but it would not be a tight bound.




2. True or false?

(a) In the worst case, finding an element in a sorted array using binary search is O (n).
(b) In the worst case, finding an element in a sorted array using binary search is Q (n).
(¢) If a function is in  (n), then it could also be in O (n?).
(d) If a function is in © (n), then it could also be in O (n?).

(e) If a function is in 2 (n), then it is always in O (n).

Solution:

(a) True
(b) False
(c) True
(d) True

(e) False
As a reminder, we can think about O informally as an upper bound. If a function f(n) isin O (¢(n)), then g(n) is
a function that dominates f(n), and this domination can be really overshooting the mark. Every (correct) piece
of code we write in this class will have a running time that is O (n!”!n!) . Conversely, we can think about 2

informally as a lower bound. If a function f(n) is in Q (g(n)), then f(n) is a function that dominates g(n), and
this domination can be really overshooting the mark also. The running time of any piece of code is always in
Q(1). And finally, © is a much stricter definition. f(n) is in © (g(n)) (if and only if) f(n) is in O (¢g(n)) and in
Q (g(n)). Usually when people say O, they mean O.

For questions a and b: note that binary search takes log(n) time to complete. log(n) is upper-bounded by n, so
log(n) € O (n). However, log(n) is not lower-bounded by n, which means log(n) € € (n) is false.




3. Finding bounds

For each of the following code blocks, construct a mathematical function modeling the worst-case runtime of the
code in terms of n. Then, give a tight big-O bound of your model.

(a) int x = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j<n=*xn/ 3; j++) {
X =3
3
3

Solution:

. . 3 . . 2, .
One possible answer is 7'(n) = %-. The inner loop performs approximately %~ iterations; the outer loop
repeats that n times, and each inner iteration does a constant amount of work.

So the tight worst-case runtime is O (n?).

The exact constant you get doesn’t matter here, since we’ll ignore the constant when we put it into O
notation anyway. For example, saying we do 3 operations per inner-loop iteration (checking the loop
condition, updating j, and updating x) and getting n?® instead of n3/3 is also completely reasonable.

(b) int x = 0;
for (int i =n; i>=0; 1 -=1) {
if (i %3 ==20){

break;
} else {
X += n;
3
3
Solution:

The tightest possible big-O bound is O (1) because exactly one of n, n — 1, or n — 2 will be divisible by
three for all possible values of n. So, the loop runs at most 3 times.
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(d)

int x = 0;
for (int i = 0; i < n; i++) {
if (i %5 ==20)(
for (int j = 0; j <n; j++) {
if (1 ==3){

x =1 % 3

}
}
3
3
Solution:
While the inner-most if statement executes only once per loop, we must check if i == j is true once per

each iteration. This will take some non-zero constant amount of time, so the inner-most loop will perform
approximately n work (setting the constant factors equal to 1, is conventional, since constant factors can
depend on things like system architecture, what else the computer is doing, the temperature of the room,
etc.).

The outer-most loop and if statement will perform n work during only 1/5th of the iterations and will
perform a constant amount of work the remaining 4/5ths of the time. So, the total amount work done
4
is approximately % -n + ?n - 1. If we simplify, this means we can ultimately model the runtime as
2
4
approximately T'(n) = % + ?n

Therefore, the tightest worst-case asymptotic runtime will be O (n?).

int x = 0;
for (int 1 = 0; i < n; i++) {
if (n < 100000) {
for (int j = 0; j < n; j++) {
X +=1;
3
} else {
X +=1;
3
3
Solution:

Recall that when computing the asymptotic complexity, we only care about the behavior for large inputs.
Once n is large enough, we will only execute the second branch of the if statement, which means the
runtime of the code can be modeled as just T'(n) = n. So, the tightest worst-case runtime is O (n).




(e) int x = 0;
if (n%2==20){
for (int i =0; i <n=*n#*n*n; i++) {

X++;
3
} else {
for (int i = 0; i <n *n * n; i++) {
X++;
3
3
Solution:

We can model the runtime of this function in the general case as:

Tg (n) = 3

n* when n is even
n° when n is odd

However, the prompt was asking you to prove a model for the worst possible case — that is, when n is
even. If we assume n is even, we can produce the following model:

Tw(n) =n*

The tightest worst-case asymptotic runtime is then O (n*) in this case.

Something interesting to note is that the general model has differing tight big-O and big-{2 bounds and
so therefore has no big-© bound.

That is, the best big-O bound we can give for Ty(n) is T;(n) € O (n*); the best big-Q2 bound we can give
is Ty(n) € Q(n?). These two bounds (n* and n?®) are different so there is no big-© for T},. Importantly
however, there is a big-© for our simpler model, T',. That is, T}, (n) € © (n*).




4. Deques

The most recent homework introduces the concept of a Deque, which you will be working with in this section to
solve the problems. Some information about deques is copied below from the homework description.

Deque (usually pronounced like “deck”) is an irregular acronym of double-ended queue. Double-ended queues are
sequence containers with dynamic sizes that can be expanded or contracted on both ends (either its front or its
back). Deques can do everything that both stacks and queues can do.

Specifically, any deque implementation must have exactly the following operations.

public void addFirst(T item): Adds an item of type T to the front of the deque.
public void addLast(T item): Adds an item of type T to the back of the deque.
public boolean isEmpty(): Returns true if deque is empty, false otherwise.
public int size(): Returns the number of items in the deque.

public void printDeque(): Prints the items in the deque from first to last, separated by a space. Once all
the items have been printed, print out a new line.

public T removeFirst(): Removes and returns the item at the front of the deque. If no such item exists,
returns null.

public T removelLast(): Removes and returns the item at the back of the deque. If no such item exists,
returns null.

public T get(int index): Gets the item at the given index, where 0 is the front, 1 is the next item, and so
forth. If no such item exists, returns null. Must not alter the deque!

You will see two deque implementations in the homework: a deque implemented with a circular array and a deque
implemented with linked nodes.

(a) Write a method removeRandom that accepts a Deque<Integer> as a parameter and chooses at random to

remove and return the first or last element in the given deque. It should be equally likely to remove and
return the first or last element. You should use Math.random() to help you randomly select the first or last
element. Math. random() randomly returns a real number in the range [0, 1) (greater than or equal to 0.0 and
less than 1.0).

Assume that the given deque contains at least one element.

Solution:

public static int removeRandom(Deque<Integer> deque) {
if (Math.random() < 0.5) {
return deque.removeFirst();

}

return deque.removelLast();

}




(b) Write a method evenOdd that accepts a List<Integer> as a parameter and returns a Deque <Integer> where

(@

all even numbers in the given list appear before the odd numbers in the given list.
For example, if you are given the list [1, 2, 3, 4, 5, 6] then even0dd should return the deque [6, 4, 2, 1, 3, 5].

Solution:

public static Deque<Integer> evenOdd(List<Integer> list) {
Deque<Integer> deque = new LinkedDeque<>(); // ArrayDeque also works
for (int n : list) {
if (n%2==0){
deque.addFirst(n);
} else {
deque.addLast(n);
3
3
return deque;

b

Write a method isReverse that accepts two Deque<String> as parameters and returns true if the second
deque is exactly the reverse of the first deque, false otherwise.

For example, if the first deque stores [”a”, ”b”, ”c”, ”d”]and the second deque stores [”d”, "c”, "b”, "a”],
then isReverse should return true because the second deque is exactly the first deque reversed.

You may modify the given deques to solve this problem. You may not use the Deque get method to solve
this problem.

Solution:

One possible solution appears below:

public static boolean isReverse(Deque<String> dequel, Deque<String> deque2) {

if (dequel.size() != deque2.size()) {

return false;
)
while (!dequel.isEmpty()) {

if (!dequel.removeFirst().equals(deque2.removelast())) {

return false;

3
1
return true;

}




(d) Implement isReverse without modifying the input deques. That is to say, if the first deque stores
[”a”, ”"b”, ”c”, ”d”], then after a call to isReverse, dequel should remain in the state [”a”, ”b”, “c”, "d”].

You may not use the Deque get method to solve this problem.

Solution:

One possible solution appears below. Note, in particular, that we cannot return false within the loop
because we need the input deques to be in the same state that they were in originally.

public static boolean isReverse(Deque<String> dequel, Deque<String> deque2) {
if (dequel.size() != deque2.size()) {
return false;
3
boolean isReverse = true;
for (int i = 0; i < dequel.size(); i++) {
String eltl = dequel.removeFirst();
String elt2 = deque2.removelast();
if (leltl.equals(elt2)) {
isReverse = false;
}
// Preserve inputs by adding eltl and elt2 back to their respective deques.
dequel.addlLast(eltl);
deque2.addFirst(elt2);
3

return isReverse;

3

(e) Questions (c) and (d) restricted your use of the get method. Why might we want to restrict usage of a method
like get for a generic deque?

Solution:

Deques can be implemented using a circular array or linked nodes. When working with linked nodes,
there isn’t an easy way to access data in the middle since we need to continuously follow references to
access a node in the middle of a long chain (think about a linked list — there isn’t an easy way to know
what the third element in a linked list is. You would need to start at the beginning and hop through each
node’s next pointer). For a linked node implementation, we would expect O (n) runtime for get if n is the
size of the deque.

A deque implemented with a circular array, on the other hand, does not have this same problem since we
can easily access an element in an array given an index. We would expect O (1) runtime for get for the
array implementation.

When writing these methods, we don’t know what implementation of a deque the client chose, so it would
be best to avoid calls to get to avoid the potential runtime addition from continuously calling this method.




Food for thought

5. LRU Caching

When writing programs, it turns out to be the case that opening and loading data in files can be a very slow
process. If we plan on reading information from those files very frequently (for example, if we want to implement
a database), what we might want to do is cache the data we loaded from the files — that is, keep that information
in-memory.

That way, if the user requests information already present in our cache, we can return it directly without needing
to open and read the file again.

However, computers have a much smaller amount of RAM then they have hard drive space. This means that our
cache can realistically contain only a certain amount of data. Often, once we run out of space in our cache, we get
rid of the items we used the least recent. We call these caches Least-Recently-Used (LRU) caches.

Discuss how you might apply or adapt the ADTs and data structures you know so far to develop an LRU cache.
Your data type should store the most recently used data, and handle the logic of whether it can find the data in the
cache, or if it needs to read it from the disk. Assume you have a helper function that handles fetching the data from
disk.

Your cache should implement our IDictionary interface and optimize its operations with the LRU caching strategy.
After you've decided on a solution, describe the tradeoffs of your structure, possibly including a worst-case and
average-case analysis.

Solution:

We can use two ADTs: a dictionary, which stores each request and the corresponding file data, and a list, which
keeps track of the last n requests made.

Here, we will probably want to use a hashmap (which has © (1) lookup) rather then our ArrayDictionary which
has © (n) lookup.

Every time somebody makes a request, we search to see if it’s located inside the list. If it is, we remove it and
re-add that request to the very front. If the request is new, we just add it directly to the front.

This will cause the least-frequently made requests to naturally end up near the end of the list. If the list increases
beyond a certain length (beyond our cache size), we’ll remove them from both list and our dictionary.

This makes any lookup in the worst case © (n), where n is the size of our cache. However, the most frequently
made requests will be located near the front of the list, which makes their lookup time roughly constant.




