
Section 09: Solutions

1. Sorting Algorithms Steps

Show the steps taken for each sort as we have learned in lecture.

(a) Insertion sort on 0, 4, 2, 7, 6, 1, 3, 5.

Solution:

0 | 4 2 7 6 1 3 5

0 4 | 2 7 6 1 3 5

0 2 4 | 7 6 1 3 5

0 2 4 7 | 6 1 3 5

0 2 4 6 7 | 1 3 5

0 1 2 4 6 7 | 3 5

0 1 2 3 4 6 7 | 5

0 1 2 3 4 5 6 7 |

(b) Selection sort on 0, 4, 2, 7, 6, 1, 3, 5.

Solution:

0 | 4 2 7 6 1 3 5

0 1 | 2 7 6 4 3 5

0 1 2 | 7 6 4 3 5

0 1 2 3 | 6 4 7 5

0 1 2 3 4 | 6 7 5

0 1 2 3 4 5 | 7 6

0 1 2 3 4 5 6 | 7

0 1 2 3 4 5 6 7 |

(c) Heapsort on 0, 6, 2, 7, 4. (You may want to draw out the heap. Make sure the first step you do is the
heapification step!)

Solution:

7 6 2 0 4 (turns the array into a valid heap)

6 4 2 0 7 ('delete' 7, then sink 4)

4 0 2 6 7 ('delete' 6, then sink 0)

2 0 4 6 7 ('delete' 4, then sink 2)

0 2 4 6 7 ('delete' 2)

0 2 4 6 7 ('delete' 0)

(d) Merge sort on 0, 4, 2, 7, 6, 1, 3, 5.

Solution:

0 4 2 7 6 1 3 5

0 4 2 7 6 1 3 5

0 4 2 7 6 1 3 5

1



0 4 2 7 6 1 3 5

0 4 2 7 1 6 3 5

0 2 4 7 1 3 5 6

0 1 2 3 4 5 6 7

(e) Quicksort on 18, 7, 22, 34, 99, 18, 11, 4. (Assume that we always choose first element as the pivot.
Show the steps taken at each partitioning step.)

Solution:

Partition(18):
7, 11, 4, 18, 22, 34, 99, 18

Partition(7):
4, 7, 11, 18, 22, 34, 99, 18

Partition(4): (no change, sublist containing 4 has one element)
4, 7, 11, 18, 22, 34, 99, 18

Partition(11): (no change, sublist containing 11 has one element)
4, 7, 11, 18, 22, 34, 99, 18

Partition(22):
4, 7, 11, 18, 18, 22, 34, 99

Partition(18): (no change, sublist containing 18 has one element)
4, 7, 11, 18, 18, 22, 34, 99

Partition(34):
4, 7, 11, 18, 18, 22, 34, 99

Partition(99): (no change, sublist containing 99 has one element)
4, 7, 11, 18, 18, 22, 34, 99

2. Sorting Decisions

For each of the following scenarios, say which sorting algorithm you think you would use and why. As with the
design decision problems, there may be more than one right answer.

(a) Suppose we have an array where we expect the majority of elements to be sorted “almost in order”. What
would be a good sorting algorithm to use?

Solution:

Merge sort and quick sort are always predictable standbys, but we may be able to get better results if we
try using something like insertion sort, which is O (n) in the best case.

(b) You are writing code to run on the next Mars rover to sort the data gathered each night (Think about sorting
with limited memory and computational power).

Solution:

2



Since each memory stick costs thousands (millions?) of dollars to send to Mars, an in-place sort is probably
your best bet. Among in-place sorts, heap sort is a great choice (since it is guaranteed O (n logn) time and
doesn’t even use much stack memory). Insertion sort meets memory needs, but wouldn’t be fast.

(c) You’re writing the backend for the website SortMyNumbers.com, which sorts numbers given by users.

Solution:

Do you trust your users? I wouldn’t. Because of that, I want a worst-case O (n logn) sort. Heap sort or
Merge sort would be good choices.

(d) Your artist friend says for a piece she wants to make a computer sort every possible ordering of the numbers
1, 2, . . . , 15. Your friend says something special will happen after the last ordering is sorted, and you’d like to
see that ASAP.

Solution:

Since you’re going to sort all the possible lists, you want to optimize for the average case – Quick sort
has the best average case behavior, which makes it a really good choice. Merge sort and heapsort also
have average speed of O (n logn) but they’re usually a little slower on average (depending on the exact
implementation).

She didn’t appreciate your snarky suggestion to “just print [1, 2, . . . , 15] 15! times.” Something about not
accurately representing the human struggle.

3. Sorting Algorithm Analysis

(a) What are two techniques that can be used to reduce the probability of Quicksort taking the worst case running
time?

Solution:

(i) Randomly choose pivots.

(ii) Shuffle the list before running Quicksort.

(b) When choosing an appropriate algorithm, there are often several trade-offs that we need to consider. Complete
the chart for the following sorting algorithms by writing down the best case and worst case runtimes in Θ()
notation and whether or not the sort is stable. You may write any notes about the sort in the “Notes” column;
this column will not be graded.

3



Runtime
(best)

Runtime
(worst)

Stable?
(Y/N)

Notes (not graded)

Selection
Sort

Insertion
Sort

Heapsort

Merge
Sort

Quicksort
(Naive)

4



Solution:

Runtime
(best)

Runtime
(worst)

Stable?
(Y/N)

Notes (not graded)

Selection
Sort

Θ(N2) Θ(N2) No Same best case and worst case. Not
stable if we use swapping method
from lab, but there is a possibility of
stability if we use an auxiliary array
.

Insertion
Sort

Θ(N) Θ(N2) Yes Best case is using a sorted array or
an array of all duplicates. Worst
case is using a reverse-sorted ar-
ray. “Average” case is Θ(N2). The
runtime of insertion sort depends
on the number of inversions; if we
know the number of inversions is k,
then the runtime of insertion sort is
Θ(N + k) (the best case is when k is
the smallest and is equal to 0 (sorted
array or array of duplicates); the
worst case is when k is the largest
and is equal to (N(N−1)

2 (maximum
number of inversions, reverse sorted
array)).

Heapsort Θ(N) Θ(N logN)No Best case is if the heap contains all
duplicate items (every remove oper-
ation wouldn’t require bubbling the
heap).

Merge
Sort

Θ(N logN)Θ(N logN)Yes

Quicksort
(Naive)

Θ(N logN)Θ(N2) Yes Quicksort can also be implemented
so it’s unstable if Hoare’s partition-
ing is used (no auxiliary arrays are
created, and it is done “in-place”).

5


	1 Sorting Algorithms Steps
	2 Sorting Decisions
	3 Sorting Algorithm Analysis

