
5

How are bugs fixed? Here’s one proposal.

• Productive changes fix bugs.

• Information gathered about the
system informs productive changes.

• A hypothesis guides information
gathering and testing.

• Things we know about the problem
inform how we choose hypotheses.

ArrayQueue maintains certain invariants.
Unexpected result after add and remove.

A bug exists in the ArrayQueue isEmpty
method.

Information ???

The point here is that information is the
most important thing and you need to do
whatever’s necessary to get information.

1

2

3

?: Do we have reason to question the things we know about the problem? Or the
hypothesis?

6

A good hypothesis identifies the cause of failure separately from where and when the
program actually fails. The state of the ArrayQueue determines the behavior of isEmpty.

Item[] data

int size

int front

int back

State

A bug exists in the ArrayQueue isEmpty
method.

Information ???

2

3

A good hypothesis describes a problem and is both testable and falsifiable. While this
hypothesis is both, it doesn’t really yield much more information about the problem or
how to fix it.

7

A good hypothesis identifies the cause of failure separately from where and when the
program actually fails. The state of the ArrayQueue determines the behavior of isEmpty.

The hypothesis on the left suggests more about the problem than the one on the right.

A bug exists in the ArrayQueue isEmpty
method.

The size variable is not set correctly,
causing isEmpty to return false.

Q1: Which of the hypotheses below do you think will yield more information upon
answering?

8

ArrayQueue1<Integer> queue = new ArrayQueue1<>();

queue.add(1);

queue.remove();

queue.add(3);

queue.remove();

queue.remove();

queue.add(6);

queue.remove();

System.out.println(

 "isEmpty() expected true, got " + queue.isEmpty());

?: What does this test check?

10

Debugging is about integrating various different sources of information. Let’s try out a
few methods of gathering information to understand the bug.

- Trying new inputs.
- Writing a unit test to reproduce the bug.
- Explaining to yourself the behavior of each line of code.
- Searching online to understand what error messages mean.
- Changing or removing code.
- Poking at memory values with a debugger or print statements.

?: Bugs often appear away from their root causes. How does each information
gathering method help us learn more about the problem?

12

Testing is a means of gathering information. But because unit tests are just programs,
we can automate it and continuously gather information.

The messages output by JUnit are kind of ugly, and invoking each test manually is annoying.

IntelliJ has built-in support for JUnit.

1. Annotate each test (Java method) with @org.junit.Test.

2. Change all test methods to non-static.

3. Use IntelliJ’s built-in JUnit runner to run all tests and tabulate results.

This is called boilerplate code.

14

@org.junit.Test ArrayQueueTest

To have IntelliJ generate the boilerplate code in a class ArrayQueue Test,

1. With the cursor placed somewhere inside the class’s curly braces, press
Alt+Insert (on Windows/Linux) or Command+N (on Mac) to open the options
for generating code.

2. In the pop-up menu, select “Test Method” and then choose the JUnit test
option.

3. Fill in a name for the test.
4. Write the body of the test.

Protip: You can also generate all sorts of other boilerplate from this keyboard
shortcut, such as “public static void main(String[] args)”.

16

How are bugs fixed? Here’s one proposal.

• Productive changes fix bugs.

• Information gathered about the
system informs productive changes.

• A hypothesis guides information
gathering and testing.

• Things we know about the problem
inform how we choose hypotheses.

The point here is that information is the
most important thing and you need to do
whatever’s necessary to get information.

Two new regression tests

They’re called regression tests because we want to ensure that future changes don’t
break these test cases that we know our program has had difficulty with in the past.

Suppose we’re implementing ArrayDeque
from HW 2.

1. Describe a unit test we might want
to write for ArrayDeque.

2. What behaviors does this test
check? Describe in terms of the
methods it checks as well as
concepts like contracts, invariants,
etc. that we’ve discussed in class.

17

Q

Implementer

Client

ADT

?: How did the ad-hoc tests for ArrayQueue1 and ArrayQueue2 expose particular
bugs? What was special about those tests?

Q1: Describe a unit test we might want to write for ArrayDeque. Recall that the Deque
interface expects methods such as addFirst, addLast, removeFirst, removeLast, and
get.

Q2: What behaviors does this test check? Describe in terms of the methods it checks
as well as concepts like contracts, invariants, etc. that we’ve discussed in class.

Not only does running a test improve our
understanding of a problem, but so does
writing a test!

Tests are hard to write, but easy to run.

Maximize the benefit of testing by writing
tests first (or early) and code afterwards.

19

The point here is that information is the
most important thing and you need to do
whatever’s necessary to get information.

“I’m almost done, I just need to make sure it works.”
– Famous last words

If testing is left until after all of the code is written, we lose any opportunities to gather
information along the way and fix bugs as they come up! We may even be solving the
wrong problem altogether.

?: How does testing serve as a form of planning?

?: What makes writing good tests so challenging?

1. Identify a new feature.

2. Write a unit test for that feature.

3. RED: Run the test. It should fail.

4. GREEN: Write code that passes test.

5. REFACTOR: Improve code quality.

20

The point here is that information is the
most important thing and you need to do
whatever’s necessary to get information.

?: Testing is just one tool in the information gathering toolbox. We’ve seen how testing
can be a forming of planning. How do other information gathering methods inform our
planning processes?

22

How are bugs fixed? Here’s one proposal.

• Productive changes fix bugs.

• Information gathered about the
system informs productive changes.

• A hypothesis guides information
gathering and testing.

• Things we know about the problem
inform how we choose hypotheses.

ArrayQueue maintains certain invariants.
Unexpected result after add and remove.

The remove method decrements the size
variable even when the queue is empty.

Modify the remove method to handle the
special case of removing if empty.

The point here is that information is the
most important thing and you need to do
whatever’s necessary to get information.

1

2

3

?: What are the differences between this new hypothesis and the hypothesis that we
started with? How did we get from the starting hypothesis to this new hypothesis?

