
Overall Asymptotic Runtime Bound for dup1

Give an overall asymptotic runtime bound for R as a combination of Θ, O, and/or Ω notation.
Take into account both the best and the worst case runtimes (Rbest and Rworst).

3

Q Demo

Q1: Give an overall asymptotic runtime bound for R as a combination of Θ, O, and/or
Ω notation. Take into account both the best and the worst case runtimes (Rbest and
Rworst).

8

Print Party: Attempt 1

Find a simple f(N) such that the runtime
R(N) ∈ Θ(f(N)).

A. 1

B. log N

C. N

D. N log N

E. N2

F. Other

void printParty(int N) {

 for (int i = 1; i <= N; i *= 2) {

 for (int j = 0; j < i; j += 1) {

 System.out.println("hello");

 }

 }

}

Q

Note that there’s only one case.
No separate case analysis!

Q1: Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)).

?: How do we know that there’s only one case to consider?

Print Party: Attempt 2
10

void printParty(int N) {

 for (int i = 1; i <= N; i *= 2)

 for (int j = 0; j < i; j += 1)

 System.out.println("hello");

}

0

1

2

3

4

5

0 1 2 3 4 5

i

j

Find a simple f(N) s.t. the runtime R(N) ∈ Θ(f(N)).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 3 3 7 7 7 7 15 15 15 15 15 15 15 15 31 31 31C(N):

N : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 3 3 7 7 7 7 15 15 15 15 15 15 15 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 3 3 7 7 7 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 3 3 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 3 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Let the cost model C(N) be the number of calls to println for a given N. This is our
representative operation for figuring out the runtime.

?: For each N, predict C(N).

Repeat After Me…

There is no magic shortcut for these problems (except in a few well-behaved cases).

We’ll expect you to know these two summations since they’re common patterns.

Strategies.

1. Find the exact count of steps.

2. Write out examples.

3. Use a geometric argument–visualizations!

14

Demo

Numerical Linear Algebra (Lloyed N. Trefethen, David Bau, III/SIAM)

Real world programs are often messy and difficult to model.

?: What’s different between these two summations?

?: How did we apply these strategies to analyze printParty?

Informal Recursion Analysis

Find a simple f(N) such that the runtime
R(N) ∈ Θ(f(N)).

Inspect the example and give the order of
growth of the runtime as a function of N.

A. 1

B. log N

C. N

D. N2

E. 2N

16

Q public static int f3(int n) {

 if (n <= 1)

 return 1;

 return f3(n-1) + f3(n-1);

}

3

2 2

1 1 1 1

3

2 2

1 1 1 1

4

?: What does each node represent in the tree on the right?

Q1: Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)).

Recursion and Exact Counts

Find a simple f(N) such that the runtime
R(N) ∈ Θ(f(N)).

Approach 2: Count number of calls to f3,
given by C(N).

Give a simple, exact expression for C(N).

19

public static int f3(int n) {

 if (n <= 1)

 return 1;

 return f3(n-1) + f3(n-1);

}

Q

3

2 2

1 1 1 1

3

2 2

1 1 1 1

4

?: What is the exact value of the last term in the sum for C(N)?

Q1: Give a simple, exact expression for C(N).

The Merge Operation

Given two sorted arrays, the merge operation combines them into a single sorted array by
successively copying the smallest item from the two arrays into a target array.

25

2 3 4 5 6 7 8 10 11

2 3 6 10 11 4 5 7 8

2 3 4 5 6 7 8 10 11

2 3 6 10 11

2 3 4 5 6 7 8 102 3 4 5 6 7 8

2 3 6 10 11

2 3 4 5 6 7 8

4 5 7 8

2 3 4 5 6 72 3 4 5 6 7

4 5 7 8

2 3 4 5 6

2 3 6 10 11

2 3 4 5 62 3 4 52 3 4 5

4 5 7 8

2 3 42 3 4

4 5 7 8

2 32 3

2 3 6 10 11

22

2 3 6 10 11

?: What is a cost model that we can use to evaluate the runtime of the merge
operation?

Merge Sort

Merge sort algorithm merges every layer.

1. If array is of size 1, return.
2. Merge sort the left half.
3. Merge sort the right half.
4. Merge the two sorted halves.

For N = 64, the total runtime is ~384 AU.

• Top layer: ~64 AU
• Second layer: 2(~32 AU) = ~64 AU
• Third layer: 4(~16 AU) = ~64 AU
• ith layer: 2i - 1(~64 AU / 2i - 1) = ~64

AU

29

N=64

N=32 N=32~32

~64

~32

MM

M

16 16 16 16

M M M M

~16

8 8

M M

~8 ···

···

?: How does the call tree for merge sort differ from the example we saw in f3?

?: How do these differences affect our runtime analysis?

