
Balanced Binary Search Trees

Full. Every node has either 0 or 2 children.

Describe an invariant that includes the balanced trees below and excludes unbalanced trees.

5

Q

Let’s go back in time. What if we don’t accept this resolution? Sure, a full binary 
search tree does not guarantee balance. However, we can come up with another 
invariant that does guarantee balance!

Q1: Describe an invariant that includes the balanced trees below, and excludes 
unbalanced trees.

Pivoting to Priority Queues

Unfortunately, we don’t know how to 
efficiently maintain BST completeness.

Hypothesis. Too slow to maintain both 
the Binary Search Tree Invariant and the 
Completeness Invariant. Drop the BST 
Invariant and choose a faster invariant.

Let’s implement a priority queue instead.

8

rotateRight(Z)

E

C Z

B D Y

X

E

C Z

B D Y

A

D

B Y

A C E Z

?: For the bottom example, give an asymptotic lower bound (i.e. Big-Omega) for the 
runtime to fix the tree where N is the number of items.



Binary Max-Heap

Plan. Optimize for MaxPQ: put the 
max-priority item at the root of the tree.

A Binary Max-Heap has two invariants.

Max-Heap Invariant. Every node greater 
than or equal to both its children.

Completeness Invariant. Missing nodes 
only at the bottom level (if any), all 
nodes are as left as possible

9

6

5

8

4

7

1

5

4

8

6

7

1

Note that, in this visualization, the priority is the value shown in the node. Hereafter, 
we’ll refer to the max-priority item as just “max item” for brevity.

Which of these are valid max-heaps?

10

8

8

8

8

8

8

7

5

8

6

2

3

9

0

7

65

0

1



Returning the Max

By construction, the largest value in a 
max-heap is always the root of the tree.

Max-Heap Invariant is recursive. Subtree 
rooted at node 6 is itself a max-heap!

12

6

5

8

4

7

1

?: What does the fact that the invariant is recursive guarantee about the relationship 
between the root 8 and its grandchildren, 4, 5, and 1? What about potential 
great-grandchildren?

Removing: First Algorithm

Goal. Remove and return the max item.

1. Remove the root.

2. Promote the larger child recursively.

This algorithm is broken. Fill in the blanks 
with valid heap values such that the heap 
is no longer valid after removing the max.

14

8

Q

Q1: This algorithm is broken. Fill in the blanks with valid heap values such that the 
heap is no longer valid after removing the max.



Removing: Safe Removal

Problem. Removing the root node leaves 
a hole in the heap that isn’t easily fixed.

Are there any nodes in the heap that are 
safe to remove, i.e. removed without 
affecting any other nodes in the heap?

16

Q

5

4

8

3

2

1

?: What invariants do we need to keep in mind when implementing remove?

Q1: Are there any nodes in the heap that are safe to remove, i.e. removed without 
affecting any other nodes in the heap?

4

1

5

3

21

4

5

3

25

4

1

3

25

4

1

3

2

8

Removing the Max

Problem. Removing the root node leaves 
a hole in the heap that isn’t easily fixed.

1. Swap root with rightmost leaf.

2. Remove rightmost leaf.

3. Sink new root to its proper place, 
promoting the larger child.

18

5

4

8

3

2

1

?: What about the two other leaf nodes on the bottom level? Why can’t they be safely 
removed?



Maintaining Heap Invariants

Sink.

Swap a node down the tree until it is larger 
than both of its children. Promote the 
larger child. Can break ties arbitrarily.

Swim.

Swap a node up the tree until its parent is 
larger than itself.

19

6

2

3

1

4 3

2

6

1

2

5

?: How can we use these operations to insert an item?

Inserting an Item

Give an algorithm for inserting an item.

For example, add the item 8 to this heap.

20

Q

3

2

6

1

2

5

Q1: Give an algorithm for inserting an item. For example, add the item 8 to this heap.



25

items and parents

k e v b g p y a d f j m r x

0 0 0 1 1 2 2 3 3 4 4 5 5 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

e

b g

a d f j

v

p y

m r x

k0

1 2

3 4 5 6

7
8 9 10 11 12 13

2

3

items

parents

Note that the value of each letter (k, e, v, …) doesn't mean anything.

26

items without parents

k e v b g p y a d f j m r x
0 1 2 3 4 5 6 7 8 9 10 11 12 13

e

b g

a d f j

v

p y

m r x

k0

1 2

3 4 5 6

7
8 9 10 11 12 13

2

3

items

private int parent(int i) { return /* ????? */ ; }

Q

Assumption: 
complete tree

Q1: Complete the return statement in the parent method.


