B Balanced Binary Search Trees

Full. Every node has either 0 or 2 children.

Describe an invariant that includes the balanced trees below and excludes unbalanced trees.

\, \

Pivoting to Priority Queues

Unfortunately, we don’t know how to

efficiently maintain BST completeness. .
rotateRight(Z)

Hypothesis. Too slow to maintain both
the Binary Search Tree Invariant and the
Completeness Invariant. Drop the BST
Invariant and choose a faster invariant.

Let's implement a priority queue instead.

Let’s go back in time. What if we don’t accept this resolution? Sure, a full binary
search tree does not guarantee balance. However, we can come up with another
invariant that does guarantee balance!

Q1: Describe an invariant that includes the balanced trees below, and excludes
unbalanced trees.

?: For the bottom example, give an asymptotic lower bound (i.e. Big-Omega) for the
runtime to fix the tree where N is the number of items.




Which of these are valid max-heaps?

Binary Max-Heap

Plan. Optimize for MaxPQ: put the
max-priority item at the root of the tree.

A Binary Max-Heap has two invariants. ° e ° ° °
Max-Heap Invariant. Every node greater

than or equal to both its children. ° a ® 5 e ° ° o e 0
Completeness Invariant. Missing nodes

only at the bottom level (if any), all

sl 000 000 OO® OO OO

.l ar ’ gethelpatpollEv.coms

Note that, in this visualization, the priority is the value shown in the node. Hereafter,
we’ll refer to the max-priority item as just “max item” for brevity.



Returning the Max E) Removing: First Algorithm

By construction, the largest value in a Goal. Remove and return the max item.
max-heap is always the root of the tree.
>0 (@
Ma)t(-:ea:p Ilzjvaglefn?tls lr;ecurswer.] Subltree ° 0 1. PR e s
rooted at node 6 is itself a max-heap!
@ Z @ 2. Promote the larger child recursively.

This algorithm is broken. Fill in the blanks
with valid heap values such that the heap
is no longer valid after removing the max.

?: What does the fact that the invariant is recursive guarantee about the relationship Q1: This algorithm is broken. Fill in the blanks with valid heap values such that the
between the root 8 and its grandchildren, 4, 5, and 1? What about potential heap is no longer valid after removing the max.
great-grandchildren?



E) Removing: Safe Removal Removing the Max

Problem. Removing the root node leaves Problem. Removing the root node leaves
a hole in the heap that isn't easily fixed. a hole in the heap that isn't easily fixed.

Are there any nodes in the heap that are e e 1. Swap root with rightmost leaf. e e
safe to remove, i.e. removed without ;

. . 2. Remove rightmost leaf.
affecting any other nodes in the heap?

e ° a 3. Sink new root to its proper place, e ° 0

promoting the larger child.

?: What invariants do we need to keep in mind when implementing remove? ?: What about the two other leaf nodes on the bottom level? Why can’t they be safely
removed?

Q1: Are there any nodes in the heap that are safe to remove, i.e. removed without
affecting any other nodes in the heap?



Maintaining Heap Invariants
Sink.
Swap a node down the tree until it is larger

than both of its children. Promote the
larger child. Can break ties arbitrarily.

& @
Q1O

Swim.

Swap a node up the tree until its parent is
larger than itself.

669
000‘

[) Inserting an Item

Give an algorithm for inserting an item.

For example, add the item 8 to this heap. e

?: How can we use these operations to insert an item?

20

Q1: Give an algorithm for inserting an item. For example, add the item 8 to this heap.




11

12

itens IDMIDNDNDOGNDEN

0 1 2 3 4 5 6 7 8 9 10 11 12 13
o|oo1 1]2]2]3[3]a]4]5]5]6]
9 1 2134 5 6 7 8 9 10 11 12 13

items and parents

25

Note that the value of each letter (k, €, v, ...) doesn't mean anything.

8 9 10 11 12 13

itens DAIDADNDOGNDOGED

e 1 2 3 4 5 6 7 8 9 10 11 12 13

F items without parents

26

Q1: Complete the return statement in the parent method.




