Integer Overflow Collisions

In Java, the largest int is 2,147,483,647.

Going over this limit results in overflow,
starting back over at the smallest int.

If there are more unique mappings than
unique ints, then collisions will still occur!

int x = 2147483647,
System.out.println(x);

// 2147483647
System.out.println(x + 1);
// -2147483648

DataIndexedStringSet disi;

disi.add("melt banana");

disi.contains("subterrestrial anticosmetic");

// true: both strings hash to 839099497

Separate Chaining

Instead of storing a boolean, store a
bucket of items at the given index.

Each bucket in our array is initially empty.
When an item x gets added at index h...

If bucket h is empty, create a new list
containing x and store it at index h.

If bucket h is already a list, add x to
this list if it is not already present.

add("a")

add("abomamora")
add("adevilish")
add("abomamora")

contains("adevilish")
0 .
1[=—{a]
111239443 abomamora | adevilish |
111239444
111239445

?: Why is it necessary to check if x is not already present in the bucket before adding

x?

?: When would it not be necessary to check if x is already present in the bucket?




Separate Chaining Runtime

Worst case runtime will be proportional to length of longest list, Q.

o[
Worst case time contains(x) add(x)
1487 Bushy BSTs 0(log N) 0(log N)
DatalndexedSet o(1) o(1)
2074
Separate Chaining 0(Q) 0(Q)

DatalndexedSet

3097 [ —»{ doc

111239443 abomamora |—>] adevilish_|
111239442

?: Why is the runtime for separate chaining in terms of Q, the length of the longest
list?

Saving memory with Separate Chaining and modulus

Instead of using the raw hash code, take the modulus of the hash code to compute index.

0 —
4 o
=
2 LA
1487 [(F—>{bee]
= m 3| = abomamora |—>| adevilish |
4 — cat
2074 [F~[E] =
Sm I
%
3097 [ —»{ doc g Z_ [ bee | doc

111239443 abomamora |—>] adevilish |
111239442

?: Do items with the same hash code (collision) still collide after applying mod 107?
What about items with different hash codes?

?: How does this change affect runtime? The length of the longest list, Q?




Hash Table

Data is converted by a hash function into an integer representation called a hash code.

The hash code is reduced to a bucket index with the modulo operator.

s N
Data

Hash function

Hash code | 1634854400

Modulo length

Index

Hash table

doc
A

WoNOCuWN-_2©

Hash Table Runtime

Good news. We use way less memory and support any String.

Bad news. Worst case runtime is now 0(Q), where Q is the length of the longest list.

A ON-_2©

Worst case time contains(x) add(x)
Bushy BSTs O(log N) O(log N)
DatalndexedSet e(1) o(1)
Separate Chaining 0(Q) 0(Q)
Hash Table

?: What's a potential problem with saving memory by using the modulus idea?




B Improving Hash Table Runtime

Even if items are distributed evenly, lists are of length Q =N / M. For M = 5,Q € O(N).

How can we improve our design to guarantee that Q € ©(1)?

Worst case time contains(x) add(x)
? Bushy BSTs O(log N) O(log N)
g DatalndexedSet o(1) o(1)
4 Separate Chaining 0(Q) 0(Q)
Hash Table

Q1: How can we improve our design to guarantee that Q € ©(1)?

Hash Table Resizing

When N / M = 1.5, double the number of buckets, M.

N=6 M=4 N/M=1.5
16 20 5
[ R
13
1 ——' resizeM=8

3 — —>

?: After resizing, where will the bucket go?

?: Fill in the resulting hash table after resizing.




Iy Hash Table Resizing N=6 M=8 N/M=075

16
4] —
When N / M = 1.5, double the number of buckets, M. *E

N=6 M=4 N/M=15 )
16 20 ;

0 __.E_> o 3 __3_11
13

20 e
1 | E
13

2 5 ——>
3 — —>
@
71 —F—

o

21

?: What is the best case order of growth of Q with respect to N?

?: What is the worst case order of growth of Q with respect to N?

Resizing Hash Table Runtime

Best case. All items are distributed evenly across M ~ N buckets, so Q € 0(1).

Worst case. All items collide in a single bucket, so Q € ©(N).

contains(x): Compute hash code of x, take modulus, search the list of items.
add(x): Resize if N / M exceeds the load factor. Add x if the table does not contains(x).

Most add operations will be ©(Q), but some will be ©(N).

If we choose to resize by doubling, tripling, etc. the runtime “on average” will be 0(Q).

22

More detail on resizing in the future.

?: As the hash table designer, what can we do to avoid the worst case scenario?
What can we do as a hash table user?




[} 's this a valid hash function?

public int hashCode() {

return 17;

Q1: Is this a valid hash function?

hashCode Contract
i
n Hash function 11 1 __13;
2
B Modulo length 3 3 7“—3—11

a Search list

27

We know that unequal items can return the same hash

?: Do equal items need to return the same hash code?

code.




