
General Data Structures

Data structures allow us to avoid looking 
at all of the data all of the time.

Binary search tree. Make a decision to 
ignore data based on key comparison.

Binary heap. Optimize for access to the 
smallest or largest items.

Hash table. Make a decision to ignore 
data based on hash code, bucket index.

Invariants help us to ensure consistency.

3

4

2 6

1 3 5 7 6

5

8

4

7

1

0
1
2
3
4

Specialized Data Structures

Data-Indexed Array. Keys must be small.

Tries. Keys must be subdivisible (strings).

Today: multi-dimensional keys.

4

s

a

md p

e

a

w

l

s

F

守门呗

守门员

守门呙

39,312,024,869,367
39,312,024,869,368
39,312,024,869,369

...

F
...

T



2-d Linear Range Search

Linear range search: a simple baseline.

2-d Range Search: O(N). Scan through all 
the keys and collect matching results.

Insert a 2-d key: O(1). Put key anywhere.

Because keys can be anywhere, insertion 
is fast but search is unacceptably slow.

Goal: a logarithmic time solution.

5

A
(-1, -1)

(2, 2)
B

(0, 1)

C

D
(1, 0)

E

(-2, -2)

F

(-3, 2.5)

Data structures optimize for certain operations on data by coming with organizational 
schemes that allow us to ignore large portions of the data. These organizational 
schemes are implemented with algorithms that respect the data structure invariants.

Uniform Partitioning

Spatial partitioning. Divide space into 
non-overlapping subspaces.

Uniform partitioning. Partition space into 
uniform rectangular buckets (“bins”).

How many bins do we need to scan to 
collect all points in the green rectangle?

8

A
(-1, -1)

(2, 2)
B

(0, 1)

C

D
(1, 0)

E

(-2, -2)

F

(-3, 2.5)

Q

Q1: How many bins do we need to scan to collect all the points in the red rectangle?



Uniform Partitioning

Spatial partitioning. Divide space into 
non-overlapping subspaces.

Uniform partitioning. Partition space into 
uniform rectangular buckets (“bins”).

What is the runtime for nearest assuming 
points are evenly spread out?

10

Q

Q1: What is the runtime for nearest assuming points are evenly spread out?

x-coordinate BST

Suppose we put points into a BST map 
ordered by x-coordinate.

14

A
(-1, -1)

(2, 2)
B

(0, 1)

C

D
(1, 0)

E

(-2, -2)

F

(-3, 2.5)

A (-1, -1)

B (2, 2)

C (0, 1)

D (1, 0)

E (-2, -2)

F (-3, 2.5)

More general theme inspired by binary search trees vs. ordered linked nodes: 
recursive subdivision leads to logarithmic behaviors, while uniform subdivision leads 
to linear behaviors.



Recursive Partitioning

1-dimensional data (BST)

Keys are ordered on a line.

Recursive decision: left or right.

2-dimensional data (Quadtree)

Keys are located on a plane.

Recursive decision: NE, SE, SW, or NW.

18

NW

SW

NE

SE

AA
left right

?: What does a quadtree look like? Each node has how many children?

Quadtree

5 objects in 2D space.

19

A
NW

NE SE
SW

B

C

SW

SE

D

E
A (-1, -1)

(2, 2)
B

(0, 1)

C

D
(1, 0)

E
(-2, -2)

Demo

?: Does insertion order affect the balance of a quadtree?



Recursive Partitioning

25

2-dimensional data (Quadtree)

Keys are located on a plane.

Recursive decision: NE, SE, SW, or NW.

NW

SW

NE

SE

A

2-dimensional data (2-d tree)

Recursive decision 1: left or right.

Recursive decision 2: up or down.

A

up

down

left right

2-d Tree

Idea. Root node partitions entire space 
left and right (by x-coordinate).

All depth 1 nodes partition subspace into 
up and down (by y-coordinate).

All depth 2 nodes partition subspace into 
left and right (by x-coordinate).

…

Each point owns 2 subspaces.

The subspace above D is infinitely large.

26

A
(2, 3)

B

(4, 2)

(4, 5)

C

D

(3, 3)

E

(1, 5)

F
(4, 4)

Demo

Root

?: Does insertion order affect the balance of a k-d tree?



2-d Tree Insertion

Where would G go in the 2-d tree?

27

A
(2, 3)

B

(4, 2)

(4, 5)

C

D

(3, 3)

E

(1, 5)

F
(4, 4)

Q

G (5, 3)

L R

D U

L R

B (4, 2)

A (2, 3)

C (4, 5)

D (3, 3)

D U

E (1, 5)

D U

F (4, 4)

D U

Q1: Where would G go in the 2-d tree?

2-d Tree Nearest Neighbors

Optimization. Do not explore subspaces 
that can’t possibly have a better answer 
than the current best.

Find the nearest point to (0, 7).

29

A
(2, 3)

B

(4, 2)

(4, 5)

C

D

(3, 3)

E

(1, 5)

F
(4, 4)

Demo

There’s a more advanced and subtle pruning rule that we’ll see in the homework.


