
Tree Traversal Orderings

Level-Order Traversal. Visit top-to-bottom, left-to-right (like reading in English): DBFACEG

Depth-First Traversals.

Traverse deep nodes (A, C, E, G) before shallow ones (D, B, F).

Note: “Traversing” a node is different than “visiting” a node.

3 types: Preorder, Inorder, Postorder.

3

A C

B

D

E

F

G

Depth-First Traversals

Preorder Traversal.
“Visit” a node, then traverse its children.

4

A C

B

D

E

F

G

preOrder(BSTNode x) {

 if (x == null) return;

 print(x.key)

 preOrder(x.left)

 preOrder(x.right)

}

D B A C F E G

Depth-First Traversals

Inorder Traversal.
Traverse left child, “visit”, then traverse
right child.

5

A C

B

D

E

F

G

inOrder(BSTNode x) {

 if (x == null) return;

 inOrder(x.left)

 print(x.key)

 inOrder(x.right)

}

A B C D E F G

Depth-First Traversals

Postorder Traversal.
Traverse left, traverse right, then “visit.”

6

A C

B

D

E

F

G

postOrder(BSTNode x) {

 if (x == null) return;

 postOrder(x.left)

 postOrder(x.right)

 print(x.key)

}

Q

Depth-First Traversals: Visual Trick (for humans)

First, trace a path around the graph from the top going counter-clockwise.

Preorder. “Visit” when passing the left.

Inorder. “Visit” when passing the bottom.

Postorder. “Visit” when passing the right.

9

A C

B

D

E

F

G

A C B E G F D

Alternate Tree Definition

Tree. Consists of a set of nodes and a set of edges that connect those nodes.

Invariant. There is exactly one path between any two nodes.

13

Graph Definition

Graph. Consists of a set of nodes and a set of zero or more edges.

Each edge connects any two nodes. Not all nodes need to be connected.

14

Simple Graph Definition

Simple Graph. A graph with no self-loops and no parallel edges.

Unless otherwise stated, all graphs in this course are simple graphs.

15

Self-loop

Parallel

16

a

b

d

c

a

b

d

c

e

a

b

d

c

a

b

d

c

b

d

c

e

a

1

2

3

1

Acyclic

Cyclic

Directed Undirected

Edge Labels

Types of Graphs

s-t Connectivity

Let’s solve a classic graph problem called the s-t connectivity problem.

Given source vertex s and a target vertex t, does there exist a path between s and t?

Try to come up with an algorithm for connected(s, t).

19

1

2

3

4

5

6

7

8

0
s

t

Applying Tree Traversal

One possible recursive algorithm for connected(s, t).

1. Does s == t? If so, return true.
2. Otherwise, if connected(v, t) for any neighbor v of s, return true.
3. Return false.

What is problematic about this algorithm?

20

Q

1

2

3

4

5

6

7

8

0
s

t

Depth-First Search

One possible recursive algorithm for connected(s, t).

1. Mark s as visited.
2. Does s == t? If so, return true.
3. Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
4. Return false.

Each vertex visited at most once.

Depth-First Search.

22

1

2

3

4

5

6

7

8

0
s

t

Demo

connected(s, t):

● Mark s.
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
● Return false.

s-t Connectivity

1

2

3

4

5

6

7

8

0
s

t

DepthFirstPaths Demo

Goal: Find a path from s to every other reachable vertex, visiting each vertex at
most once. dfs(v) is as follows:

● Mark v.
● For each unmarked adjacent vertex w:

○ set edgeTo[w] = v.
○ dfs(w)

1

2

3

4

5

6

7

8

0
s

marked edgeTo
0 F -
1 F -
2 F -
3 F -
4 F -
5 F -
6 F -
7 F -
8 F - Order of dfs returns:

Order of dfs calls: 0

Start by calling dfs(0).

