
Tree Traversal Orderings

Level-Order Traversal. Visit top-to-bottom, left-to-right (like reading in English): DBFACEG

Depth-First Traversals.

Traverse deep nodes (A, C, E, G) before shallow ones (D, B, F).

Note: “Traversing” a node is different than “visiting” a node.

3 types: Preorder, Inorder, Postorder.
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Depth-First Traversals

Preorder Traversal.
“Visit” a node, then traverse its children.
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preOrder(BSTNode x) {

    if (x == null) return;

    print(x.key)

    preOrder(x.left)

    preOrder(x.right)

}
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Depth-First Traversals

Inorder Traversal.
Traverse left child, “visit”, then traverse 
right child.
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inOrder(BSTNode x) {

    if (x == null) return;

    inOrder(x.left)

    print(x.key)

    inOrder(x.right)

}
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Depth-First Traversals

Postorder Traversal.
Traverse left, traverse right, then “visit.”
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postOrder(BSTNode x) {

    if (x == null) return;

    postOrder(x.left)

    postOrder(x.right)

    print(x.key)

}

Q



Depth-First Traversals: Visual Trick (for humans)

First, trace a path around the graph from the top going counter-clockwise.

Preorder. “Visit” when passing the left.

Inorder. “Visit” when passing the bottom.

Postorder. “Visit” when passing the right.
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Alternate Tree Definition

Tree. Consists of a set of nodes and a set of edges that connect those nodes.

Invariant. There is exactly one path between any two nodes.
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Graph Definition

Graph. Consists of a set of nodes and a set of zero or more edges.

Each edge connects any two nodes. Not all nodes need to be connected.
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Simple Graph Definition

Simple Graph. A graph with no self-loops and no parallel edges.

Unless otherwise stated, all graphs in this course are simple graphs.
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Self-loop

Parallel
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Types of Graphs

s-t Connectivity

Let’s solve a classic graph problem called the s-t connectivity problem.

Given source vertex s and a target vertex t, does there exist a path between s and t?

Try to come up with an algorithm for connected(s, t).
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Applying Tree Traversal

One possible recursive algorithm for connected(s, t).

1. Does s == t? If so, return true.
2. Otherwise, if connected(v, t) for any neighbor v of s, return true.
3. Return false.

What is problematic about this algorithm?
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Depth-First Search

One possible recursive algorithm for connected(s, t).

1. Mark s as visited.
2. Does s == t? If so, return true.
3. Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
4. Return false.

Each vertex visited at most once.

Depth-First Search.
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connected(s, t): 

● Mark s.
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
● Return false.

s-t Connectivity
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DepthFirstPaths Demo

Goal: Find a path from s to every other reachable vertex, visiting each vertex at 
most once. dfs(v) is as follows:

● Mark v.
● For each unmarked adjacent vertex w:

○ set edgeTo[w] = v. 
○ dfs(w)
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#     marked    edgeTo
0        F        -
1        F        -
2        F        -
3        F        -
4        F        -
5        F        -
6        F        -
7        F        -
8        F        - Order of dfs returns:

Order of dfs calls: 0

Start by calling dfs(0).


