
Client uses graph algorithms like BFS and
DFS to solve real-world problems.

ADT specifies the API for interacting with
graphs, like how to get the neighbors of v.

Implementer designs a performant data
structure representation for the ADT.

3

Implementer

Client

ADT

Graph API is a
design problem!

5

Create an empty graph for V vertices.

Add an edge (v, w).

Return the neighboring vertices of v.

Return the total number of vertices, V.

Return the total number of edges, V.

class Graph

 Graph(int V)

 void addEdge(int v, int w)

 Iterable<Integer> adj(int v)

 int V()

 int E()

6

Number of vertices (V) must be
specified in the graph constructor.

Number of neighbors for a vertex v: get
adj and then return the size of the list.

Unweighted graph only!

class Graph

 Graph(int V)

 void addEdge(int v, int w)

 Iterable<Integer> adj(int v)

 int V()

 int E()

7

Write a client method to print a graph.
class Graph

 Graph(int V)

 void addEdge(int v, int w)

 Iterable<Integer> adj(int v)

 int V()

 int E()

Q 1

3

24

$ java printDemo
1 - 2
1 - 4
2 - 1
2 - 3
3 - 2
4 - 1

void print(Graph G) {

}

Directed graph: a[s][t]. Undirected graph: a[v][w], a[w][v].

12

0 1 2

0 0 1 1

1 0 0 1

2 0 0 0

s
t

0 1 2 3

0 0 1 0 0

1 1 0 1 0

2 0 1 0 1

3 0 0 1 0

v
w

0

1

2

0

1

3

2

G.adj(2) returns an iterable of [1, 3].

Runtime to iterate over all neighbors of v
is Θ(V): adj needs to return a new iterable
containing all the indices with value 1.

13

0 1 2 3

0 0 1 0 0

1 1 0 1 0

2 0 1 0 1

3 0 0 1 0

v
w

0

1

3

2

Give the order of growth of the runtime for
print if the graph is an adjacency matrix,
where V is the number of vertices and E is
the number of edges.

14

0 1 2 3

0 0 1 0 0

1 1 0 1 0

2 0 1 0 1

3 0 0 1 0

v
w

0

1

3

2
void print(Graph G) {

 for (int v = 0; v < G.V(); v++) {

 for (int w : G.adj(v)) {

 println(v + "-" + w);

 }

 }

}

Q

Simple Graph. A graph with no self-loops and no parallel edges.

17

0 1 2 3

0 0 1 0 0

1 1 0 1 0

2 0 1 0 1

3 0 0 1 0

v
w

0

1

3

2

Self-loop

Parallel

Maintain array of lists indexed by vertex number.

Most popular approach for representing graphs.

18

0
1
2

[1, 2]
[2] 0

1

2

Give the order of growth of the runtime for print if the graph is an adjacency list, where V is
the number of vertices and E is the number of edges.

19

0
1
2

[1, 2]
[2] 0

1

2

Q

void print(Graph G) {

 for (int v = 0; v < G.V(); v++) {

 for (int w : G.adj(v)) {

 println(v + "-" + w);

 }

 }

}

V iterations

???

Design pattern for graph clients: Decouple graph type from processing algorithm.

1. Create a graph instance and populate it with data.
2. Pass the graph instance to the constructor of the client class.
3. The client class runs the algorithm in its constructor and stores the solutions.
4. Query the client class for the stored solutions.

25

class DepthFirstPaths

 DepthFirstPaths(Graph G, int s)

 boolean hasPathTo(int v)

 Iterable<Integer> pathTo(int v)

1

2

3

4

5

6

7

8

0
s

Demo

26

Instance variables store algorithm data.

marked[v] is true iff v connected to s.
edgeTo[v] is vertex visited to get to v.

DepthFirstPaths constructor computes
the result of the algorithm with the dfs
recursive method.

How would we implement pathTo(v) and
hasPathTo(v)?

private boolean[] marked;
private int[] edgeTo;
private int s;
DepthFirstPaths(Graph G, int s) {
 ...
 dfs(G, s);
}
private void dfs(Graph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 edgeTo[w] = v;
 dfs(G, w);
 }
 }
}

Q

28

Give a tight big-O runtime bound for the
DepthFirstPaths constructor. Assume
the adjacency list graph representation.

A. O(V)

B. O(V + E)

C. O(V2)

D. O(V * E)

private boolean[] marked;
private int[] edgeTo;
private int s;
DepthFirstPaths(Graph G, int s) {
 ...
 dfs(G, s);
}
private void dfs(Graph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 edgeTo[w] = v;
 dfs(G, w);
 }
 }
}

Q

31

Instance variables store algorithm data.

marked[v] is true iff v connected to s.
edgeTo[v] is vertex visited to get to v.

BreadthFirstPaths constructor computes
the result of the algorithm with the bfs
iterative method.

Cost model given undirected graph?

Each vertex is visited at most once.
Each edge is checked at most twice.

private boolean[] marked;
private int[] edgeTo;
private void bfs(Graph G, int s) {
 Queue<Integer> fringe = ...;
 fringe.add(s);
 marked[s] = true;
 while (!fringe.isEmpty()) {
 int v = fringe.remove();
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 fringe.add(w);
 marked[w] = true;
 edgeTo[w] = v;
 }
 }
 }
}

Demo

Memory usage in addition to graph: O(V) to store the marked and edgeTo arrays.

How does the efficiency compare between adjacency list and adjacency matrix?

32

Problem Problem Description Solution Efficiency (adj. list)

s-t paths Find a path from s to every
reachable vertex. Depth-first search

O(V + E) runtime
Θ(V) space

s-t shortest paths Find a shortest path from s to every
reachable vertex. Breadth-first search

O(V + E) runtime
Θ(V) space

If we use an adjacency matrix, BFS and DFS become O(V2). Terrible for sparse graphs!

Thus, we’ll always use adjacency lists unless otherwise stated.

33

Problem Problem Description Solution Efficiency (matrix)

s-t paths Find a path from s to every
reachable vertex. Depth-first search

O(V2) runtime
Θ(V) space

s-t shortest paths Find a shortest path from s to every
reachable vertex. Breadth-first search

O(V2) runtime
Θ(V) space

