
3

BreadthFirstPaths

Instance variables store algorithm data.

marked[v] is true iff v connected to s.
edgeTo[v] is vertex visited to get to v.

BreadthFirstPaths constructor computes
the result of the algorithm with the bfs
iterative method.

Cost model given undirected graph?

Each vertex is visited at most once.
Each edge is checked at most twice.

private boolean[] marked;
private int[] edgeTo;
private void bfs(Graph G, int s) {
 Queue<Integer> fringe = ...;
 fringe.add(s);
 marked[s] = true;
 while (!fringe.isEmpty()) {
 int v = fringe.remove();
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 fringe.add(w);
 marked[w] = true;
 edgeTo[w] = v;
 }
 }
 }
}

Demo Shortest Paths Tree

If G is a connected edge-weighted graph with V vertices and E edges, how many edges are in
the Shortest Paths Tree (SPT) of G? Assume every vertex is reachable.

5

1

2

3

4

5

6

0s

v distTo[] edgeTo[]
0 0.0 -
1 2.0 0 -> 1
2 1.0 0 -> 2
3 11.0 6 -> 3
4 5.0 1 -> 4
5 9.0 4 -> 5
6 10.0 4 -> 6

Q

Finding a Shortest Paths Tree

What is the shortest paths tree for the graph below starting from the source vertex A?

7

Q

B

C

As

5

5
D12

2

1

Dijkstra’s Algorithm

Insert all vertices into fringe PQ, storing vertices in order of distance from source.

While fringe is not empty: Remove (closest) vertex v and relax all edges pointing from v.

10

Demo

1

2

3

4

5

6

0s
5

2

1

15

3

2

11

5

1

1

41

Edge Relaxation (v, w).

For each edge (v, w), add edge
to the SPT only if the edge is
closer than our best-so-far.

Dijkstra’s PseudocodePQ.add(s, 0)

For all other vertices v, PQ.add(v, infinity)

While PQ is not empty:

p = PQ.removeSmallest()
Relax all edges from p

Relaxing an edge (v, w) with weight:

If distTo[w] > distTo[v] + weight:

distTo[w] = distTo[v] + weight
edgeTo[w] = v
PQ.changePriority(w, distTo[w])

Invariants

edgeTo[v]: best known predecessor of v.

distTo[v]: best known distance of s to v.

PQ maintains vertices based on distTo.

Important properties

Always visits vertices in order of total
distance from source. Relaxation always
fails on edges to visited (white) vertices.

11

Dijkstra’s Algorithm Correctness

Dijkstra’s algorithm. Visit vertices in order of distance from source.

On visit, relax every edge from the visited vertex.

Dijkstra’s can fail if the graph has negative weight edges. Give an example graph.

13

Q

A* Search Algorithm

Dijkstra’s algorithm with one modification.

• Dijkstra’s algorithm: Priority is defined by distTo[v] only.
• A* search: Priority is defined by distTo[v] + h(v, goal).

Where h(v, goal) is a heuristic: an estimate of the distance from v to the goal.

19

distTo[v] h(v, goal)

Demo Computing a Heuristic

Where h(v, goal) is a heuristic: an estimate of the distance from v to the goal.

For maps, we can use Euclidean distance (right triangle hypotenuse length).

Will A* search return the correct shortest path if h(v, goal) = 10 for every v in the graph?

21

h(v, goal)

Q

