Array Representation with Quick Find Invariants

Before connect(2, 3) operation:

. 1,2, 4}, {3, 5}, {6} {e, 1, 2, 4, 3, 5},

Eﬂ Lo 1z }—3]

4] 5
g elels a5 e

After connect(2, 3) operation:

s JHHEHBEEN

{6}

private int[] id; Quick Find Analysis

boolean isConnected(int p, int q) {

return id[p] == id[q]; If we have V vertices...

} + EisConnected calls, each O(1).
void connect(int p, int q) { V connect calls, each O(V).
int setP = id[p];
int setQ = id[ql;
for (int i=0; i<id.length; i++) {
if (id[i] == setP)
id[i] = setQ;

Simple graph: E < V2.

Kruskal's: O(E+V?
=0(Elog V + V?)

} Both operations need to be O(log V)!

B Improving the connect Operation

Quick Union invariant. For each v, parent[v] is the parent of v.

Show the result after calling connect(5, 0).

", 0

2 3 4 5 6

\2\4\4\3\4\3\6\

Worst-Case Height Trees

Spindly tree: repeatedly connect the first
item'’s tree below the second item'’s tree.

connect(4, 3)
connect(3, 2)
connect(2, 1)
connect(1, 0)

Worst-case runtime for both connect and
isConnected is O(N).

private int find(int p) {

while (p != parent[p]) Naive Quick Union Analysis
p = parent[p];

return p;
y + EisConnected calls, each O(V).

V connect calls, each O(V).

If we have V vertices...

boolean isConnected(int p, int q) {
return find(p) == find(q);

} Kruskal's: O(EV +V?)

void connect(int p, int q) { =0(Elog V + EV + V?)
int i = find(p); =0(EV +V?)
int j = find(q);

parent[i] = j; Worst case is slower than Quick Find!

private int find(int p) {
A —— Naive Quick Union Analysis
p = parent[p];
return p;

}

boolean isConnected(int p, int q) {

Hypothesis (from B-Trees). Unbalanced
growth leads to worst-case height trees.

return find(p) == find(q); Identify (different due to parent pointers).
} When connecting, the second item'’s tree

)) . always becomes the new root.
void connect(int p, int q) {

int i = find(p);
Plan. Choose the new root based on a
metric such as tree height.

int j = find(q);

parent[i] = j;

. . . . _ 4 _
Weighted Quick Union by Height
] [2] +
Quick Union invariant. For each v, parent[v] is the parent of v.
The result of connect(5, 0) and connect(0, 5) should be the same! n

zak
ofin

Describe how to construct a worst-case height tree given a weighted
quick union by height.

Join by Web

0 Go to PollEv.com

@ Enter KEVINL

e Respond to activity

Installthe app or get help at PollEv.com/app ..

¥ WQUBYyHeight: Worst-Case Height Tree

Size = 4, Height = 2 Size = 8, Height = 3

22 L T RLES

Size = 16, Height = 4

rr T T e

Weighted Quick Union with Path Compression

Tie all visited nodes to the root.

Same asymptotic runtime.

void connect(int p, int q) {

int i = find(p);

int j = find(q);

if (i == j) return;

if (height[i] < height[j])
parent[i] = j;

else if (height[i] > height[j])
parent[j] = i;

else { // heights are equal
parent[j] = i;
height[i] += 1;

}

WQUBYHeight Analysis

Keep track of heights with an extra array.

Worst-case height is log(V)!

E isConnected calls, each O(log V).
V connect calls, each O(log V).

Kruskal's: O(ElogV+VlogV)
=0(ElogV +Vlog V)
=O(ElogV)ifE>V

Tie all visited nodes to the root.

Draw result of isConnected(14, 13).

B Weighted Quick Union with Path Compression

21

WQUBYySize: Worst-Case Height Tree

Worst-case analysis still works when we track subtree size, rather than subtree height!

Size = 4, Height = 2

33w

Size = 16, Height = 4

Size = 8, Height = 3

yEye,

WQUBYSize Analysis
Keep track of sizes with an extra array.

f (sizeli))
8 (SueEl; < sizeljD) { Worst-case height is log(V)!

parent[i] = j;

E isConnected calls, each O(log V).

size[j] += size[i];
V connect calls, each O(log V).

} else {
parent[j] = i;
size[i] += size[j]; Kruskal's: O(ElogV+VlogV)
} =0O(ElogV +VlogV)
=O(ElogV)ifE>V

25

WQUPathCompression

WQUBYSize with Path Compression.

Worst-case height is log*(V), where log*

while (p '= root) { is the iterated logarithm—nearly constant.

E isConnected calls, each O(log* V).
V connect calls, each O(log* V).

e.g. log*(285536) = 5,

int newP = parent[p];
parent[p] = root;

p = newP;
} Analysis is out of scope.

Kruskal's: O(E log* V +V log* V)
=O(ElogV)ifE>V

26

Summary

Disjoint Sets ADT is used to track connected components in Kruskal’s algorithm.

Graph algorithm runtime can depend on efficient data structure implementations.
Quick Find: Array representation with no tree structure. Fast isConnected, slow connect.
Quick Union: Array representation with tree structure. Worst-case linear-height trees.
Weighted Quick Union: Choose the new root strategically based on a metric.

WQUBYHeight: Use subtree height as a metric. Results in log V height.
WQUBYSize: Use subtree size as a metric. Results in log V height.
WQUPathCompression:

Use subtree size as a metric. Results in log* V height—nearly constant.

27

