
5

Goal: Fill in the findAnswer Method

public class Rasterer {
 private static final double MAX_X = 100;
 private static final double MAX_Y = 100;

 public static List<String> findAnswer(double x1, double y1,
 double x2, double y2) {
 // TODO
 return null;
 }
}

What are some potentially useful helper methods?

Arbitrary Challenging Problem of the Day

Find all labels that overlap the query.

findAnswer(20, 90, 40, 60)

[“AA”, “AB”, “BA”, “BB”]

6

AA AB AC AD

BA BB BC BD

CA CB CC CD

DA DB DC DD

100

100

(20, 90) (40, 60)

Q

Problem Decomposition in Software Engineering

Decomposition. Taking a complex task and breaking it into smaller parts. This is the heart of
computer science. Using appropriate abstractions makes problem solving vastly easier.

Perspective 1: Software engineering.

Eliminating special cases in k-d tree nearest made code simpler and more obvious.

Modularization is decomposition for managing software complexity at a project level.

• Autocomplete. Efficient search bar prefix queries.
• Heap. Efficient priority queue for route finding.
• K-d Tree. Efficient 2-d nearest neighbors to find start and goal vertices.
• A* Search. Efficient route finding.
• Rasterer. Efficient map tile display.

8

Problem Decomposition in CS Theory

Decomposition. Taking a complex task and breaking it into smaller parts. This is the heart of
computer science. Using appropriate abstractions makes problem solving vastly easier.

Perspective 2: Computational complexity theory.

Reduction. Using an algorithm for Problem Q to solve Problem P.

“If any subroutine for task Q can be used to solve P, we say P reduces to Q.”

9
Algorithms (Dasgupta, Papadimitriou, Vazirani)

10

Graph Problems and Their Solutions

Paths. Find a path from s to every reachable vertex.
Depth-first search. O(V + E) runtime with adjacency list.

Unweighted Single-Source Shortest Paths.
Find a shortest path from s to every reachable vertex.
Breadth-first search. O(V + E) runtime with adjacency list.

Weighted Single-Source Shortest Paths.
Find a shortest path from s to every reachable vertex.
Dijkstra’s algorithm. O(E log V + V log V) runtime with adjacency list.

Weighted Single-Pair Shortest Paths.
Find a shortest path from s to a single goal vertex.
A* search. Dijkstra’s algorithm with h(v, goal) as priority. Runtime depends on heuristic.

Algorithm for Finding a Shortest Paths Tree

Given a weighted, directed graph with integer edge weights between 1 and 5, find the
single-source shortest paths tree from s to every other vertex in the graph.

Your algorithm should be faster than Dijkstra’s algorithm.

11

B

C

As

5

5
D1

2

1

0

1

2

4

Q

Dijkstra’s Runtime AnalysisPQ.add(s, 0)

For all other vertices v, PQ.add(v, infinity)

While PQ is not empty:

p = PQ.removeSmallest()
Relax all edges from p

Relaxing an edge (v, w) with weight:

If distTo[w] > distTo[v] + weight:

distTo[w] = distTo[v] + weight
edgeTo[w] = v
PQ.changePriority(w, distTo[w])

ArrayHeapMinPQ implementation.

• V adds, each O(log V) time.
• V removals, each O(log V) time.
• E changePriority, each O(log V) time.

Overall: O(V log V + V log V + E log V).

Simple: O(V log V + E log V).

Assuming E > V, this is just O(E log V) for
connected graphs.

12

Reductions

15

G B

C

A

5

5

D1

2

1

Given a graph G, we created a new graph G’, then fed it to a related (but different) algorithm,
and finally interpreted the result.

Preprocess

G’ B

C

A D

PostprocessBreadthFirstPaths

BFS

SPT of G

Topological Ordering

Suppose we have tasks 0 through 7, where an arrow from v to w indicates that v must
happen before w.

Which graph algorithm could we use to find a valid ordering for these tasks?

Valid orderings include: [0, 2, 1, 3, 5, 4, 7, 6], [2, 0, 3, 5, 1, 4, 6, 7], …

17

1

2

3

4

5

6

7

0

Q Topological “Sorting”

22

1

2

3

4

5

6

7

0

0 12 3 45 6 7

Reduction to Dijkstra’s

To find a vertical seam…

Vertex. Pixel in image.

Edge. Cost to go from a pixel to its 3
downward neighbors.

Weight. Energy function of 8
neighboring pixels.

Seam. Shortest path (sum of weights)
from top to bottom.

26
Shortest Paths (Robert Sedgewick, Kevin Wayne/Princeton)

Formal Problem Statement

Using AStarSolver, find the seam from
any top vertex to any bottom vertex.

Given a digraph with positive edge
weights, and two distinguished subsets
of vertices S and T, find a shortest path
from any vertex in S to any vertex in T.

Your algorithm should run in time
proportional to E log V in the worst case.

27
Shortest Paths (Robert Sedgewick, Kevin Wayne/Princeton)

Q

S

T

