

Sort	Best-Case	Worst-Case	Space	Stable	Notes
Selection Sort	$\Theta(\mathbb{N}^2)$	$\Theta(\mathbb{N}^2)$	Θ(1)	No	
Heapsort	$\Theta(N)$	Θ(N log N)	Θ(1)	No	Slow in practice.
Merge Sort	Θ(N log N)	Θ(N log N)	Θ(N)	Yes	Fastest stable sort.
Insertion Sort	$\Theta(N)$	$\Theta(\mathbb{N}^2)$	Θ(1)	Yes	Best for small or almost sorted inputs.
Naive Quicksort	Θ(N log N)	$\Theta(N^2)$	Θ(N)	Yes	2x or more slower than merge sort.
Java Quicksort	$\Omega(N)$	$O(N^2)$?	No	Fastest comparison sort.
					7

Optimizing Quicksort

Naive Quicksort.

Recursive Depth. $\Omega(\log N)$, O(N).

Pivot choice. Leftmost item. $\Theta(1)$

Common worst-case: sorted array!

Partitioning. Allocate a new array. $\Theta(N)$

Slow but stable.

Common worst-case: all duplicates!

Java Quicksort-5x or more faster.

Recursive Depth. $\Omega(\log N)$, O(N).

Pivot choice. Approximate median. $\Theta(1)$

Resilient to worst-case inputs.

Partitioning. Long-distance swaps. $\Theta(N)$

In-place, fast, but unstable.

3-way partition to handle duplicates.

Median-Finding

Goal. Find the median item in O(N) time.

Reduces to the selection problem.

Selection. Given an array of N items, find item of rank K.

For median, find K = N / 2.

How difficult is this problem?

- Why is the time complexity of selection in $\Omega(N)$?
- Describe an O(N log N) runtime algorithm for selection with any K.
- Describe an O(N) runtime algorithm for selection with K = 0, 1, 2.

them (Debart Sydnoulek Knuin Wassa Dringer

Approximate Median-Finding

 $\label{thm:continuous} \mbox{Unfortunate reality: Quicksort with quickselect pivots is significantly slower than merge sort.}$

Goal. Find the **approximate median** item in $\Theta(1)$ time.

Median-of-3. Pick 3 items and take the median of the sample.

10

Hoare Partitioning

Demo

Hoare partitioning. In-place, unstable partitioning algorithm. Initialize an int L and an int G.

- Left pointer that loves small items < pivot.
- **G**. Right pointer that loves big items > pivot.

Idea. Walk towards each other, swapping anything they don't like.

End result is that things on left are "small" and things on the right are "large".

Hoare partitioning improves real-world runtime and space complexity.

Asymptotic time complexity still depends on pivot choice!

22

Sort

Selection Sort

Dual-Pivot Quicksort: Data Structure Analogy

If classic quicksort is analogous to BSTs, then dual-pivot quicksort is analogous to 2-3 trees.

Best-Case

Dual-Pivot Quicksort

Stable Notes

25

Dual-Pivot Quicksort

Use **two partitioning keys** p₁ and p₂ and partition into three subarrays:

- Keys less than p₁.
- Keys between p₁ and p₂.
- Keys greater than p₂.

	< p ₁	p_1	$\geq p_1$ and $\leq p_2$	p_2	> p ₂	
<u>†</u>		†		†	<u>†</u>	

Recursively quicksort the three subarrays (skip middle subarray if $p_1 = p_2$).

Now widely used. Java 8, Python unstable sort, Android, ...

Heapsort	$\Theta(N)$	Θ(N log N)	Θ(1)	No	Slow in practice.
Merge Sort	Θ(N log N)	Θ(N log N)	Θ(N)	Yes	Fastest stable sort.
Insertion Sort	$\Theta(\mathbb{N})$	$\Theta(\mathbb{N}^2)$	Θ(1)	Yes	Best for small or almost sorted input
Naive Quicksort	Θ(N log N)	$\Theta(N^2)$	Θ(N)	Yes	2x or more slower than merge sort.
Java Quicksort	Θ(N)	$\Theta(N^2)$	O(log N)	No	Fastest comparison sort.

Worst-Case

Space

27