Naive Quicksort

1. Partition around a pivot item, e.g. leftmost item.
2. Quicksort left side, all keys < pivot.
3. Quicksort right side, all keys = pivot.

’,32 15| 2 |17 (19|26 | 41 (17 | 17

—_m___ m

15 2 (17 (19|26 | 17 | 17 | 32 | 41

32's final position

3 When poll is active, respond at PollEv.com/kevinl

Give the tight asymptotic time complexity of naive quicksort assuming
no duplicate keys.

Q(N),O(NlogN)
Q(N), O(N?)
(NlogN),O(NlogN)
Q(Nlog N), O(N?)
Q(N?), O(N?)

Not sure

Install the app or get help at PollEv.com/app |

Quicksort Case Analysis

Sort Best-Case Worst-Case Space
Merge Sort O(N log N) (NlogN) ©(N)
Naive Quicksort O(NlogN) O(N?) O(N)
Java Quicksort Q(N) O(N?) ?

Stable

Yes

Yes

No

Notes

Fastest stable sort.

2x or more slower than merge sort.

Fastest comparison sort.

Argument 1: 10% Case

Suppose the pivot is always at least 10% from either edge (not to scale).

| [

| | 100 | [onr100 | | o100 |{ 8187100 |

Work at each level is in O(N).
Height is about log,,,, N € O(log N).
Overall: O(N log N).

Optimizing Quicksort

Naive Quicksort.
Recursive Depth. Q(log N), O(N).

Pivot choice. Leftmost item. (1)
Common worst-case: sorted array!

Partitioning. Allocate a new array. O(N)
Slow but stable.

Common worst-case: all duplicates!

Java Quicksort—5x or more faster.

Recursive Depth. Q(log N), O(N).

Pivot choice. Approximate median. O(1)
Resilient to worst-case inputs.

Partitioning. Long-distance swaps. O(N)
In-place, fast, but unstable.

3-way partition to handle duplicates.

Argument 2: Binary Search Tree Analogy

Random insertion into a binary search tree is expected to take O(N log N) time.

5|1 32|17 4 | 6
B! ; |BE
anl - B

B Median-Finding

Goal. Find the median item in O(N) time.

Reduces to the selection problem.

How difficult is this problem?

Selection. Given an array of N items, find item of rank K.

For median, find K=N/ 2.

Why is the time complexity of selection in Q(N)?
Describe an O(N log N)
Describe an O(N)

runtime algorithm for selection with any K.

runtime algorithm for selection with K= 0, 1, 2.

Cn

3 When poll is active, respond at PollEv.com/kevinl

If selection reduces to sorting, which of the following statements
about problem difficulty is true?

Selection < Sorting
Sorting < Selection
Selection > Sorting
Sorting > Sorting

Not sure

.- Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

9 |550| 14| 6 | 10 | S (330817913

6 5 9 |550| 14 | 10 | 330 (817 | 913

Median can't 550| 14 | 10 | 330 | 817|913
be here

14 | 10 | 330 | 550 | 817 | 913

Quickselect: Partition-selection with leftmost item as pivot

14 | 10 | 330

10 | 14 | 330

Approximate Median-Finding

Unfortunate reality: Quicksort with quickselect pivots is significantly slower than merge sort.
Goal. Find the approximate median item in ©(1) time.

Median-of-3. Pick 3 items and take the median of the sample.

if (a < b)
if (b < c) return b;
else if (a < c) return c;
else return a;
else
if (a < c) return a;

else if (b < c) return c;
else return b;

No Yes

No Yes No Yes

bkc bac akc abc
No Yes No Yes
cbha bca cab ach

Median-of-3 Decision Tree

20

Hoare partitioning. In-place, unstable partitioning algorithm. Initialize an int L and an int G.

Hoare Partitioning

L. Left pointer that loves small items < pivot.

G. Right pointer that loves big items > pivot.

Idea. Walk towards each other, swapping anything they don't like.

End result is that things on left are “small” and things on the right are “large”.

Hoare partitioning improves real-world runtime and space complexity.
Asymptotic time complexity still depends on pivot choice!

22

Dual-Pivot Quicksort: Data Structure Analogy

If classic quicksort is analogous to BSTs, then dual-pivot quicksort is analogous to 2-3 trees.

L12] [4] [67]

Dual-Pivot Quicksort

“Classic Quicksort”

25

Dual-Pivot Quicksort

Use two partitioning keys p, and p, and partition into three subarrays:

Keys less than p,.
Keys between p, and p,.
Keys greater than p,.

< pi p1 = p1 and < p y23 > ;2
0 t 0 t
To 1t gt hi

Recursively quicksort the three subarrays (skip middle subarray if p, = p,).

Now widely used. Java 8, Python unstable sort, Android, ...
26

Algorithms (Robert Sedgewick, Kevin Wayne/Princeton)

Sort Best-Case =~ Worst-Case Space Stable Notes

Merge Sort O(NlogN) ©O(NlogN) ©O(N) Yes Fastest stable sort.

Naive Quicksort @(N IOg N) @(NZ) O(N) Yes 2x or more slower than merge sort.
Java QUiCkSOI't e(N) O(Nz) O(log N) No Fastest comparison sort.

27

