
1. Partition around a pivot item, e.g. leftmost item.
2. Quicksort left side, all keys ≤ pivot.
3. Quicksort right side, all keys ≥ pivot.

3

Demo

32 15 2 17 19 26 41 17 17

15 2 17 19 26 17 17 32 41

Partition(32)
≤ 32 ≥ 32

32’s final position

4

5 7

Sort Best-Case Worst-Case Space Stable Notes

Selection Sort Θ(N2) Θ(N2) Θ(1) No

Heapsort Θ(N) Θ(N log N) Θ(1) No Slow in practice.

Merge Sort Θ(N log N) Θ(N log N) Θ(N) Yes Fastest stable sort.

Insertion Sort Θ(N) Θ(N2) Θ(1) Yes Best for small or almost sorted inputs.

Naive Quicksort Θ(N log N) Θ(N2) Θ(N) Yes 2x or more slower than merge sort.

Java Quicksort Ω(N) O(N2) ? No Fastest comparison sort.

Suppose the pivot is always at least 10% from either edge (not to scale).

8

N

N/10 9N/10

N/100 9N/100 9N/100 81N/100

Work at each level is in O(N).

Height is about log10/9 N ∈ O(log N).

Overall: O(N log N).

Random insertion into a binary search tree is expected to take O(N log N) time.

10

5 3 2 1 8 4 67

3 2 1 4 7 8 6

2 1 4 6 8

5

3 5 7

5

3 7

2 4 6 8

1

Naive Quicksort.

Recursive Depth. Ω(log N), O(N).

Pivot choice. Leftmost item. Θ(1)

Common worst-case: sorted array!

Partitioning. Allocate a new array. Θ(N)

Slow but stable.

Common worst-case: all duplicates!

Java Quicksort–5x or more faster.

Recursive Depth. Ω(log N), O(N).

Pivot choice. Approximate median. Θ(1)

Resilient to worst-case inputs.

Partitioning. Long-distance swaps. Θ(N)

In-place, fast, but unstable.

3-way partition to handle duplicates.

11

Goal. Find the median item in O(N) time.

Reduces to the selection problem.

Selection. Given an array of N items, find item of rank K.

For median, find K = N / 2.

How difficult is this problem?

• Why is the time complexity of selection in Ω(N)?
• Describe an O(N log N) runtime algorithm for selection with any K.
• Describe an O(N) runtime algorithm for selection with K = 0, 1, 2.

14

Q

16 17

550 14 10 33054 817 913

14 10 330 55054 817 913

6 5 9 550 14 10 330 817 913

9 550 14 6 10 5 330 817 913

14 10 33054 4 4 5

10 14 33054 4 4 5

Median can’t
be here

Unfortunate reality: Quicksort with quickselect pivots is significantly slower than merge sort.

Goal. Find the approximate median item in Θ(1) time.

Median-of-3. Pick 3 items and take the median of the sample.

19

if (a < b)
 if (b < c) return b;
 else if (a < c) return c;
 else return a;
else
 if (a < c) return a;
 else if (b < c) return c;
 else return b;

20

a ⩻ b

b ⩻ c

No Yes

a ⩻ c

a c b

Yes

c a b

No

a ⩻ c

b ⩻ c b a c

b c ac b a

YesNo

No Yes

No Yes

a b c

Hoare partitioning. In-place, unstable partitioning algorithm. Initialize an int L and an int G.

L. Left pointer that loves small items < pivot.

G. Right pointer that loves big items > pivot.

Idea. Walk towards each other, swapping anything they don’t like.

End result is that things on left are “small” and things on the right are “large”.

Hoare partitioning improves real-world runtime and space complexity.

Asymptotic time complexity still depends on pivot choice!

22

Demo

If classic quicksort is analogous to BSTs, then dual-pivot quicksort is analogous to 2-3 trees.

25

2 6

4

1 3 5 7

3 5

1 2 6 74

“Classic Quicksort” Dual-Pivot Quicksort

Use two partitioning keys p1 and p2 and partition into three subarrays:

• Keys less than p1.
• Keys between p1 and p2.
• Keys greater than p2.

Recursively quicksort the three subarrays (skip middle subarray if p1 = p2).

Now widely used. Java 8, Python unstable sort, Android, …
26 27

Sort Best-Case Worst-Case Space Stable Notes

Selection Sort Θ(N2) Θ(N2) Θ(1) No

Heapsort Θ(N) Θ(N log N) Θ(1) No Slow in practice.

Merge Sort Θ(N log N) Θ(N log N) Θ(N) Yes Fastest stable sort.

Insertion Sort Θ(N) Θ(N2) Θ(1) Yes Best for small or almost sorted inputs.

Naive Quicksort Θ(N log N) Θ(N2) Θ(N) Yes 2x or more slower than merge sort.

Java Quicksort Θ(N) Θ(N2) O(log N) No Fastest comparison sort.

