
We want counting sort to work for non-unique and/or non-consecutive keys!

1. Count the number of occurrences for each key option.

2. Compute the starting indices for each key option from the counts array.

3. Move through the original items in order. For each [item, key] do:

a. Get the correct index for result by checking the index array for key

b. Copy item into the result using this index

c. Increment the index array for key

4. Copy items back to initial array (if needed)

Generalizing Counting Sort Demo

1

Runtime and memory use of Θ(N + R)! N = # of items, R = radix of alphabet

We are able to beat comparison sort by avoiding binary compares.

If N >= R, we expect reasonable performance. If N is much bigger than R, then R can
become negligible.

Empirical experiments are needed to compare to Quicksort on practical inputs.

Input is restricted to alphabetic (finite radix) keys → we can’t sort items with non-alphabetic
keys, like Strings!

Counting Sort

��

3

LSD Radix Sort

Why is it important for the correctness of LSD radix sort that counting sort is stable? Give an
example of what could go wrong if it were not stable.

Q

Index Key Name

0 22 Stitch

1 12 Gantu

2 31 Nani

3 23 Lilo

4 11 David

Index Key Name

0 31 Nani

1 11 David

2 22 Stitch

3 12 Gantu

4 23 Lilo

Index Key Name

0 11 David

1 12 Gantu

2 22 Stitch

3 23 Lilo

4 31 Nani

4

https://docs.google.com/presentation/d/1pcOToMRWUOVLlpPxNxDd3-2Nfar4rBBm3sTIg-PaJWk/edit?usp=sharing
https://docs.google.com/presentation/d/1pcOToMRWUOVLlpPxNxDd3-2Nfar4rBBm3sTIg-PaJWk/edit?usp=sharing

Use counting sort on each index, right to left. Now we can sort non-alphabetic keys that
consist of alphabetic keys!

Runtime: Θ(WN + WR), Memory use: Θ(N + R) N = # of items, R = radix, W = width

If R is very small compared to N and W we can think of it as negligible.

It’s annoying that the runtime depends on the length of the longest key →

LSD Radix Sort Summary

🤔

5

Suppose we sort each digit index, left to right. Will we arrive at the correct result? Why?

MSD Radix Sort

a d d

c a b

f a d

f e e

b a d

f e d

b e d

a c e

a d d

a c e

b a d

b e d

c a b

f a d

f e e

f e d

Q

6

What is the best case runtime of MSD sort? (in terms of N, W, R)?

What type of input leads to this best case?

What is the worst case runtime of MSD sort? (in terms of N, W, R)?

What type of input leads to this worst case?

N = # of items, R = radix, W = width

Q

7

MSD Radix Sort Runtime

Runtime - Best case: Θ(N + R), Worst case: Θ(WN + WR)
Memory usage - Θ(N + WR)

Think about the runtime of MSD radix sort by considering
the number of characters that must be examined.

Long strings are rarely random in practice → may need
specialized algorithms

Analysis of MSD Radix Sort

From Algorithms, 4th edition by Sedgewick and Wayne

8

