

Counting Sort

Runtime and memory use of $\Theta(N + R)!$ N = # of items, R = radix of alphabet

We are able to beat comparison sort by avoiding binary compares.

If N >= R, we expect reasonable performance. If N is much bigger than R, then R can become negligible.

Empirical experiments are needed to compare to Quicksort on practical inputs.

Input is restricted to alphabetic (finite radix) keys \rightarrow we can't sort items with non-alphabetic keys, like Strings!

Q LSD Radix Sort

Why is it important for the correctness of LSD radix sort that counting sort is stable? Give an example of what could go wrong if it were not stable.

LSD Radix Sort Summary

Use counting sort on each index, right to left. Now we can sort non-alphabetic keys that consist of alphabetic keys!

Runtime: O(WN + WR), Memory use: O(N + R)

N = # of items, R = radix, W = width

If R is very small compared to N and W we can think of it as negligible.

It's annoying that the runtime depends on the length of the longest key ightarrow

5

• MSD Radix Sort

Suppose we sort each digit index, left to right. Will we arrive at the correct result? Why?

Q MSD Radix Sort Runtime

What is the best case runtime of MSD sort? (in terms of N, W, R)?

What type of input leads to this best case?

What is the worst case runtime of MSD sort? (in terms of N, W, R)?

What type of input leads to this worst case?

N = # of items, R = radix, W = width

Analysis of MSD Radix Sort

Runtime - Best case: $\Theta(N + R)$, Worst case: $\Theta(WN + WR)$	Random (sublinear)	with duplicates (nearly linear)	Worst case (linear)
Memory usage - $\Theta(N + WR)$	1EI0402	are	1DNB377
	1HYL490	by	1DNB377
	1R0Z572	sea	1DNB377
Think about the runtime of MSD radix sort by considering	2HXE734	seashells	1DNB377
	21YE230	seashells	1DNB377
	2X0R846	sells	1DNB377
the number of characters that must be examined.	3CDB573	sells	1DNB377
	3CVP720	she	1DNB377
Long strings are rarely random in practice \rightarrow may need	3I GJ319	she	1DNB377
	3KNA382	shells	1DNB377
	3TAV879	shore	1DNB377
	4CQP781	surely	1DNB377
	4QGI284	the	1DNB377
specialized algorithms	4YHV229	the	1DNB377
	From Algorithms,	4th edition by Sedge	ewick and Wayn